

OceanICU project

November 2022 – October 2027 Version 1.1

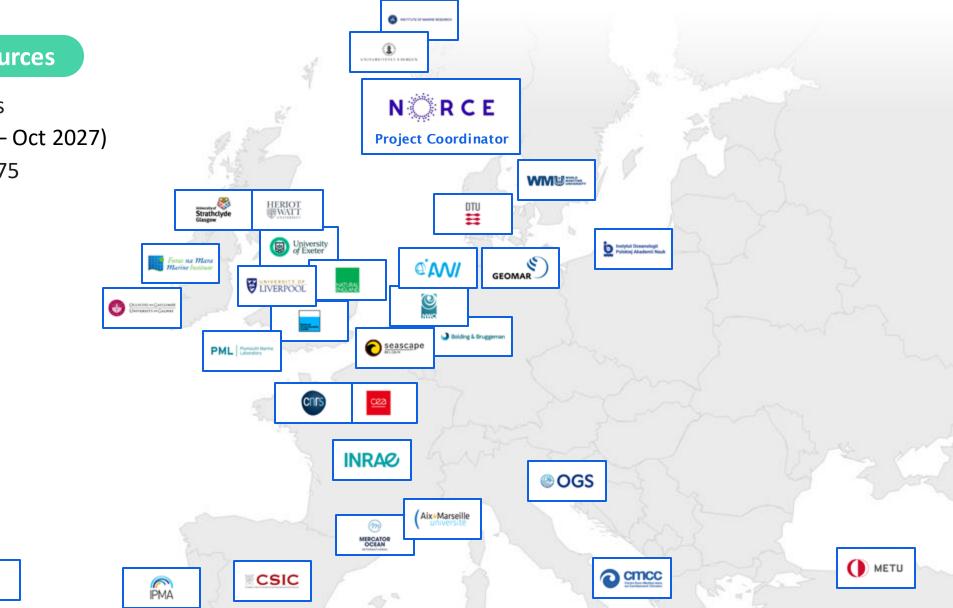
UK Research and Innovation and Innovation Innovation UK Research and Innovation (UKR) under the UK government's Horizon Europe funding guarantee [grant number 10054454, 10063673, 10064020, 10059241, 10079684, 10059012, 10048179]. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Research Executive Agency. Neither the European Union or the granting authority can be held responsible for them.

OceanICU

A Pan-European project funded by Horizon Europe and UKRI

Consortium & resources

- 31 Partners, 15 nations
- 60 months (Nov 2022 Oct 2027)


2

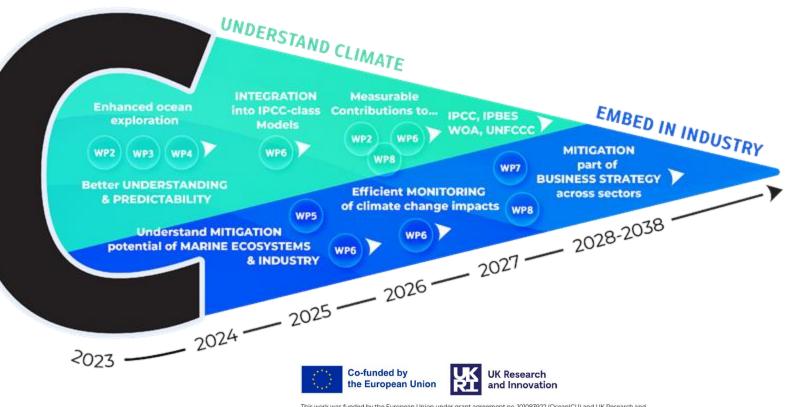
Las Palmas de

- Funding: €13 102 052,75
- EU and UKRI Funding

The Challenge

The EU Green Deal requires us to move to operating in a carbon neutral way

- How does this affect Ocean users?
- Need to compensate for:
 - Direct effects (e.g. GHG production by shipping)
 - Indirect effects (e.g. disturbances to seabed C storage by mining, disturbances to food webs by fishing or mining)
- How large are these indirect effects?
- How do they operate?
- What can we do to reduce or minimise them?

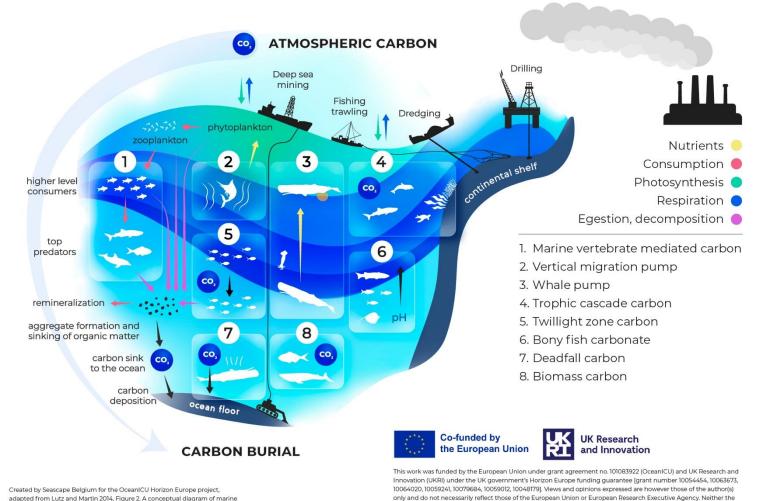


Our ambition

OceanICU as a fundamental research-based pathway to impact

- 1. Define **current state of C cycle** (provide a baseline) and assess future climate driven change to Ocean C cycle
- 2. Quantify **key processes** relevant to these indirect effects
- 3. Incorporate key processes into **models** to enable indirect effects to be quantified
- 4. Translate the improved model skills into **new tools** that allow Ocean users and licencers to estimate C cycle impacts on industrial processes
- 5. Couple these to **estimates of future industrial processes**, fishing and climate change to estimate industrial impacts on Ocean C cycle

This work was funded by the European Union under grant agreement no. 101083922 (OceanICU) and UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee (grant number 10054454, 10063673, 10064020, 10059241, 10079684, 10059012, 10048179]. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Research Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

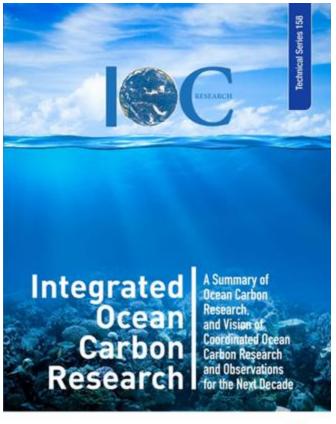

Key issues

Biological C pump processes considered in OceanICU

vertebrate carbon services | Version 1.5 - CC BY-NC-ND 4.0 DEED


- Most models include processes relevant to climate but do not include parameters relevant to industry
- There is a need to understand key processes and then model them to deliver overall vision
- Now models containing key processes need forcing with societally relevant scenarios

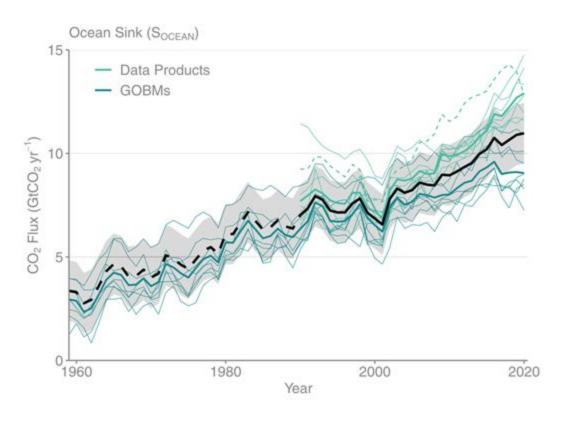
OceanICU Workplan


OceanICU is organised **WP1: Management** into eight focused WP2: The Current State of the Ocean C cycle work packages **WP5: Extraction** WP3: Climate WP4: Biological Stressors Control process DST V2 DST V1 WP6: Modelling DST V3 **WP7: Decision Support Tools** DST V1,2,3 **WP8: The Human Dimension**

Programme Management & Communication

WP1 Leader: Richard Sanders (NORCE) All partners will contribute to achieving various tasks associated in WP1.

- Data
- Website and Communication, Dissemination & Exploitation Activities
- Meeting BioDiversity and Biogeochemistry

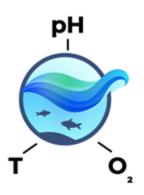


Understanding the Current State of the Ocean Carbon Cycle

WP2 leaders: Siv K Lauvset (NORCE), Andrew Watson (University of Exeter), Marion Gehlen (CEA) Contributors: UiB, AWI, NOC, LSCE, Heriot-Watt, MI, GEOMAR; in addition all partners will contribute to tasks associated with this work package.

- Model data mismatch
- Role of biology in C_{anth} Uptake
- Role of Ocean physics in regulating Ocean C uptake
- What controls the glacial interglacial cycle in atmospheric CO₂ ?

Global Carbon project



Impacts of Abiotic Climate Stressors (pH, O₂ & T) on the Biological Carbon Pump (BCP)

WP3 Leader: Jan Taucher (GEOMAR), Heriot Watt (Poulton) Contributors: GEOMAR, Heriot Watt, Liverpool, NUI Galway, ULPGC, Exeter, LSCE

- Evaluate importance of process
- Define way to include process via simple modification to model
- Implement changes in model to explore impact of changed forcing (climate or human)

Table 1.2.2 Concept Classical BCP	Methodology (EX: Experiment; OBS: Observational; DS: Data Synthesis MOD: Modeling)	Assumption/Hypothesis for Model Inclusion	Potential implementation C:N:P: stoichiometry OM: organic matter PP: primary production EP: export production R: remineralization r: respiration F: particle flux V _z (x): vertical flux of x
Nutrient control over plankton production	(EX, MOD) experiments on dust addition	Biolimitation due to macro- and micronutrients (e.g. Fe)	Fe cycle PP = f(nutrients, Fe)
T and pH control over plankton stoichiometry	(DS) Meta analysis of mesocosm data	T and pH affects organic matter production (stoichiometry) and carbon export efficiency	$\begin{aligned} PP &= f(pH, T) \\ EP/PP &= f(pH, T) \end{aligned}$
Biomixing flux of nutrients to surface waters	(MOD) Theoretical model	Enhanced mixing rate	V _z (nutrients) = f(zoo, fish)

Ecosystem controls on carbon sequestration

WP4 Leaders: Stephanie Henson (NOC) and Javier Arístegui (ULPGC) Contributors: DTU-Aqua, AMU, AWI, University of Azores, PML, IIM-CSIC, IMR

- Evaluate importance of process
- Define way to include process via simple modification to model
- Implement changes in model to explore impact of changes forcing (climate or human)

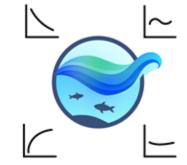
Table 1.2.3: Ecosystem Processes SHUNT	Methodology EX: Experiment OBS: Observational DS: Data Synthesis MOD: Modeling	Assumption/ Hypothesis for Model Inclusion	Potential implementation PP: primary production EP: export production R: remineralization r: respiration F: partile flux V _z (x): vertical flux of x					
Twilight Zone Carbon (Diel Vertical Migration) (DS) Synthesis of existing acoustic data Lipid Pump (DS) Analysis of high latitude copepod lipid content vs water depth		DVM increases downward flux transport	Enhanced vertical flux in model F = f(zoo, t, I)					
		Altered depth and mortality of animals during year	$\mathbf{F} = \mathbf{f}(\mathbf{zoo}, \mathbf{z}, \mathbf{t})$					
Dark Carbon Fixation	ark Carbon Fixation (DS) Data synthesis and Experimental work		$PP = f(z, T, \ldots)$					
Whale Pump (nutrient recycling via whale	(OBS) Nutrient concentration in whale excretions	Adding of nutrients increases PP	Vz(nutrients) = f(whale,) _impact of adding nutrients					
faeces and urine)	(MOD) Dissolution rates in seawater	Whales increase Production	Vz(nutrients) = f(whale,) _impact of adding nutrients					

WP5 Leaders: Dave Reid (Marine Institute), Matthias Hauckel (GEOMAR) Contributors: NIOZ, PML, DTU-Aqua, English Nature, Agrocampus Rennes, Strathclyde University, SPC

- Evaluate importance of process
- Define way to include process via simple modification to model
- Implement changes in model to explore impact of changed forcing (climate or human)

Table 1.2.4 Ecosystem Processes LEVER: Fishing	Methodology EX: Experiment OBS: Observational DS: Data Synthesis MOD: Modeling	Assumption/Hypothesis for Model Inclusion	Potential implementation				
Overfishing; MOD: (STRATH restructuring ECOPATH, ECOTROPH, ECO		Alters grazing pressure on Zooplankton	Increase Fishing Pressure t High level				
Restoration of biomass	model (NUM FEISTY) pressure on lower trophic levels. bf fixed C from (DS): Fisheries Biomass removal from		Reduced fishing mortality Remove fishing Pressure				
Removal of fixed C from ocean in fishing			High level of grazing on Fish				
Discard			Increase Downward Flux				

Table1.2.5MTDD LEVERMining (M)Trawling (T)Dredging (D)Drilling (Dr)	Methodology EX: Experiment OBS: Observational DS: Data Synthesis MOD: Modeling	Assumption/Hypo thesis for Model Inclusion	Potential implementation					
Sediment additions	(MOD) GETM ERSEM shelf (T+D)	Modification of ballast	Enhanced vertical flux in model					
	(MOD) OMEDIA Open Ocean (M+Dr)	Reduced Feeding success	Parameterisation and analysis of trawling impacts on benthic-pelagic POC exchange					
	(MOD) MIT GCM Open Ocean (M+DR)	Reduction in PAR	Adjust attenuation length scale for light					
CO2 additions	(OBS) Loss of CO2 from sediments (M)	Enhanced CO ₂ flux to water column	Vz(CO ₂) = f(trawl,) Parameterisation and analysis of trawling impacts on benthic-pelagic DIC exchange_					



Determine significance of key processes in the evolving Ocean C Cycle

The WP6 Leaders: Iris Kriest (GEOMAR) and Jerry Blackford (PML)

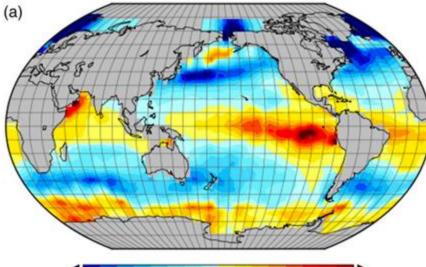
Contributors: DTU, IMR, BB, CEA/LSCE, UiB, NORCE and all partners.

Domain	Model	Features	Model type		1D Test beds			3D Test beds				3D Climate				Fish	
Physics	(1) GOTM	1D water column	Physical Model	1			2		7	5	4	4	3	4	4	4	
17. .	(2) TMM	3D global steady state				\Box	\top	\Box				-				Г	
	(3) BLOM	3D global, part of NorESM2	Biogeochemical Model Process	8	15	12	8	9	15	12	8	12	10	12	17	16	
	(4) NEMO	3D global and regional	Nutrient control over plankton production														
	(5) GETM	3D regional	Nutrient control over plankton stoichiometry													Г	
	(6) ROMS	3D regional	Biomixing flux of nutrients to	-													
	(7) UVie	3D ESM	surface waters	_	-	-		-	-	-		-		_		⊢	
Biogeochemistry (8) MOPS (9) UVic (10) iHAMMOC (11) PISCES (12) ERSEM (13) BFM (CMCC-ESM2 configuration) (14) OMEXDIA	(8) MOPS	7? pelagic variables	O ₅ T, and pH control of sinking particles													L	
	(9) UVic	9 pelagic variables	Trophic Cascade Carbon														
	(10) iHAMMOC	11? pelagic variables	Controls on remineralisation		-	-	-	-	-	-	-			-			
	(11) PISCES	24 pelagic variables	depths														
	(12) ERSEM	55 pelagic variables 34 benthic variables	CaCO3 production and sensitivity								1						
	(13) BFM (CMCC-ESM2	2 32 pelagic variables	Twilight Zone Carbon (Diel Vertical migration)														
	14 benthic variables variables,	Lipid Pump								1.1				1			
	(14) OMEXDIA	sediment only	Dark Carbon Fixation													Г	
Higher Trophic (15) FEISTY Levels	(15) FEISTY	Trait based fish model to predict foodweb biogeography	Whale Pump (bouyant faeces)													Γ	
Levels			Marine Vertebrate mediated					-						-			
		26 variables across nutrient to top predators	carbon	_		-	-	-					_		6		
End to End Models	(16) StrathE2E		Deadfall carbon														
	(17) Ecopath, Ecosim and Ecospace	50 functional groups for Celtic Sea, 1985-2016	Fishing														

Decision Support Tools for Ocean Carbon Management

The WP7 Leaders are: Michael St John (DTU) & Jorn Bruggemann (Bolding & Bruggemann Aps) - Contributors: METU, SSBE

- Help policy makers, licencers, practitioners make better decisions
- Where to sample the ocean
- What will the effect of extraction pathway x be on the Ocean C cycle
- What will the combined effects of climate change and resource extraction be on the Ocean C cycle
- Combine models and data via machine learning
- Link to Digital twin
- Multiple scales
- Precise Details unclear



⁸FluxEngine: A Flexible Processing System for Calculating Atmosphere–Ocean Carbon Dioxide Gas Fluxes and Climatologies

JAMIE D. SHUTLER,* PETER E. LAND,* JEAN-FRANCOIS PIOLLE,* DAVID K. WOOLF,[®] LONNEKE GODDIN-MURPHY,[&] FREDERIC PAUL,* FANNY GIRARD-ARDHUIN,* BERTRAND CHAPRON,* AND CRAIG J. DONLON**

* University of Exeter, Penryn, Cornwall, United Kingdom * Plymouth Marine Laboratory, Plymouth, Devon, United Kingdom * Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, F-29280, Ifremer, University of Brest, CNRS, IRD, Brest, France # Heriot-Watt University, Edinburgh, United Kingdom & Environmental Research Institute, North Highland College, University of the Highlands and Islands, Thurso, Caithness, United Kingdom ** European Space Agency, Noordwijk, Netherlands

Connecting OceanICU to Society

The WP8 Leaders are: Debbi Pedreschi (MI), Mary Wisz (WMU), Nathalie Van Isacker (SSBE) - Contributors: GEOMAR, DTU, NORCE

 Climate End users, Fisheries End users, Industrial end users

• What do they need to know?

• What format do they need information in?

cean**ICU** Do you work in a blue economy industry such as fishing, mining, offshore renewable energy, tourism or oil and gas? Are you a manager, decision-maker, scientist or policy-maker? Or are you a citizen interested in climate change and its relationship with a sustainable blue future? If any of these apply to you, why not join us on our mission to improve carbon understanding for a healthy and resilient Ocean and sustainable blue economy? Get in touch via the sign-up form to join our stakeholder panels where you can get the opportunity to take part in workshops, consultations or receive notifications about forums, webinars and other events. If you are <u>already involved</u>, please help us spread the word.

Understanding Ocean Carbon

Visit ocean-icu.eu | hello@ocean-icu.eu Stay up-to-date with the latest news $\mathbf{Y}|\mathbf{X}$ in \mathbf{D}

This work was funded by the European Union under grant agreement no. 101083922 (OceanICU) and UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee [grant number 10054454, 10063673, 10064020, 10059241, 10079684, 10059012, 10048179]. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Research Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.